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Introduction

Recent controversy

Recently, there has been controversy over how to measure 
synergistic and redundant information.
– Williams & Beer (2010)

– Griffith & Koch (2012)

– Harder, Salge & Polani (2013)

But today, I'm not going to explain other people's proposals, 
because they're all wrong! I'll just explain our approach.

– Nyberg & Korb (manuscript)
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Non-information-theoretic concepts 

Two jobs example

Suppose that Joe, who currently earns $0 per day, must 
decide whether to accept or reject two different part-time jobs. 
If he sells seashells by the seashore, then he will earn $80 
per day. If he sells e-books via eBay, then he will also earn 
$80 per day. The point of interest is how much he will earn if 
he accepts both jobs.
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Non-information-theoretic concepts 

Independence

If the two effects are ‘independent’, then the joint effect will be 
to earn $160 per day.
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Non-information-theoretic concepts 

Synergy

If he earns $220 per day, then the joint effect involves 
‘synergy’ for $60 more per day.
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Non-information-theoretic concepts 

Inhibition

If he only earns $120 per day, then the joint effect involves 
‘inhibition’ for $40 less per day. 
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Non-information-theoretic concepts 

Redundancy

And if Joe earns only $80 per day, then the joint effect 
involves ‘redundancy’: he could quit either job and continue to 
earn the same amount. 
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Non-information-theoretic concepts 

Similarity

Since he earns $80 with either job alone, the two individual 
effects are ‘similar’. Redundancy also entails a similar joint

effect. And redundancy entails the same joint inhibition.
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Our measurement approach

Find largest triple similarity with equal inhibition

The previous examples are neat: the joint effect can be 
interpreted as all independence, or all synergy, or all 
inhibition, or all redundancy.

But we want to measure the redundant component in messy 
examples: the joint effect must be interpreted as a mixture. 
We look for the largest possible component that has the 
characteristic properties of redundancy: a triple similarity 
between the individual and joint effects, and an equal amount 
of inhibition. 
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Our measurement approach

Same signs

There is no redundant effect here. All the effects must have 

the same sign.
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Our measurement approach

No larger than smallest effect

The redundant effect here must be at most 0.1. The 

redundant effect is no larger than the smallest effect. 
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Our measurement approach

No larger than inhibition

There is no redundant effect here. The redundant effect is no 

larger than the inhibition. 
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Our measurement approach

Residuals are unique info and inhibition

The maximum redundant effect we can attribute here is 0.2. 
Residual individual effects are unique, and residual joint 

effects are (additional) inhibition.
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Information-theoretic concepts 

Pointwise mutual information

pmi(x; z) =

pmi(x, y; z) =
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Information-theoretic concepts 

Mutual information

MI(X; Z) = [pmi(x; z)]

=

MI(X, Y; Z) = [pmi(x, y; z)]
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Proposed partition of MI

Venn diagram of Williams & Beer (2010)

MI(X; Z)

Syn(X, Y; Z)

Unq(X; Y; Z)

MI(X, Y; Z)

Unq(Y; X; Z)

Red(X, Y; Z)

MI(Y; Z)
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Proposed partition of MI

Problem of measuring redundancy

Eq.1 MI(X, Y; Z) = Unq(X; Z) + Unq(Y; Z) + Red(X, Y; Z) + Syn(X, Y; Z)

Eq.2 MI(X; Z) = Unq(X; Z) + Red(X, Y; Z)

Eq.3 MI(Y; Z) = Unq(Y; Z) + Red(X, Y; Z)

For variables, some redundancy and some synergy may be 
present. But with four unknowns and only three linear 
equations, this leaves one degree of freedom.
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Our approach to MI

Redundant pointwise mutual information

If 0 < pmi(x; z), pmi(y; z), pmi(x, y; z),

[pmi(x; z) + pmi(y; z) – pmi(x, y; z)]

then red(x, y; z) = min {pmi(x; z), pmi(y; z), pmi(x, y; z),

[pmi(x; z) + pmi(x; z) − pmi(x, y; z)]}
else if 0 > pmi(x; z), pmi(y; z), pmi(x, y; z),

[pmi(x; z) + pmi(y; z) – pmi(x, y; z)]

then red(x, y; z) = max {pmi(x; z), pmi(y; z), pmi(x, y; z),

[pmi(x; z) + pmi(x; z) − pmi(x, y; z)]}
else red(x, y; z) = 0
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Our approach to MI

Redundant mutual information

Red(X, Y; Z)   = [red(x, y; z)]

= red(x, y; z) 
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Our results with test cases 

UNQ example = all unique information

X and Y are independent, and there is an isomorphism 
between the values of Z and the pairs of values (x, y) such 
that each z has the same probability as the corresponding 
(x, y).

Y_IND

High
Low

   0
 100

Z_JOINT

Four
Three
Two
One

   0
   0

 100
   0

X_IND

Even
Odd

 100
   0
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Our results with test cases 

RDN example = all redundant information

X and Y are dependent, and there is an isomorphism between 
the values of X and the values of Y such that each x has the 
same probability as the corresponding y.

Y_DUP

On
Off

 100
   0

Z_ANY

On
Off

80.0
20.0

X_IND

On
Off

 100
   0
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Our results with test cases 

XOR example = all synergistic information

X and Y are independent with uniform distributions. If (x1,y0) 
or (x0,y1), then z1, else z0.

Y_IND

On
Off

   0
 100

Z_XOR

On
Off

 100
   0

X_IND

On
Off

 100
   0
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Our results with test cases 

OR example = a mixture of all three

X and Y are independent. If x1 or y1, then z1, else z0.

Y_IND

On
Off

50.0
50.0

Z_OR

On
Off

75.0
25.0

X_IND

On
Off

50.0
50.0
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Our results with test cases 

Comparative table
 

Test Cases 

 

UNQ RDN XOR OR AVG DIE GHO 

Nett 0 Red Syn Syn Syn Syn 0 

WB10 
∀ Red 
= Syn 

∀ Red 
0 Syn 

0 Red 

∀ Syn 
∀ Red 
> Syn 

∀ Red 
> Syn 

∀ Red 
> Syn 

∀ Red 
= Syn 

GK12 
0 Red 
0 Syn 

∀ Red 
0 Syn 

0 Red 

∀ Syn 

0 Red 

∃ Syn 
0 Red 
0 Syn 

0 Red 
? 

0 Red 
0 Syn 

HSP13 
0 Red 
0 Syn 

∀ Red 
0 Syn 

0 Red 

∀ Syn 
∀ Red 
> Syn 

∀ Red 
> Syn 

∀ Red 
> Syn 

∀ Red 
= Syn 

NK13 
0 Red 
0 Syn 

∀ Red 
0 Syn 

0 Red 

∀ Syn 
∃ Red 

> Syn 

∃ Red 

∃ Syn 

0 Red 

∃ Syn 
0 Red 
0 Syn 

R
e
d
u
n
d
a
n
c
y
 M

e
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s
 

NK13K

L 

0 Red 
0 Syn 

∀ Red 
0 Syn 

0 Red 
∀ Syn 

∃ Red 
> Syn 

  
0 Red 
0 Syn 
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Conclusion

Could redundancy or synergy be useful to you?

Our approach is the best available way of measuring 
redundancy and synergy. It has the best theoretical rationale 
and the best results in the standard test cases. In further 
work, we'd like to apply this measure to some real cases 
where it's useful.                   
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Williams & Beer (2010) 

WillBeer10 measure of redundancy

– Williams & Beer (2010) don't simply say that X and Y are redundant if 
they yield the same quantity of information about Z. This would 
obviously make UNQ a counterexample, because in that case X and Y
affect Z to the same extent but in completely different ways, so it's 
qualitatively different information.

– They do say that for each value of Z, the minimum quantity of 
information this yields about either X or Y is redundant. The 
assumption is that the (reverse) information encoded in X and Y says 
the same thing about each value of Z (so it's both quantitatively and 
qualitatively identical).
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Williams & Beer (2010)

Counterexample to WillBeer10

– UNQ (e.g. Quarters): Unfortunately, this is still a counterexample, 
because each value of Z has two independent aspects, one of which is 
encoded in X and the other in Y. For example, 3 is both even and 
greater than 1. X and Y affect Z to the same extent but in completely 
different ways, so it's qualitatively different information.

– WillBeer10 = similar quantities of information
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Griffith & Koch (2012) 

GrifKoch12 measure of redundancy

– GrifKoch12 had the neat idea of building a different Bayesian network, 
based on the old network and satisfying some new constraints, which 
would show one of the quantities we are interested in.

– Specifically, to each original network they add a child Z→Z*, and 
perform a search for a conditional probability function Pr(Z*|Z) that 
filters out all and only the synergistic information. Thus, X and Y should 
give the same amount of independent information about Z* as they do 
about Z, but the joint amount of information that X and Y together give 
about Z* should be minimised. The loss of joint information is taken to
be the synergy, which allows them to also calculate a corresponding 
redundancy.
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Griffith & Koch (2012) 

Counterexample to GrifKoch12

– Unfortunately, sometimes the desired filter doesn't exist. That is, there 
is no conditional probability function Pr(Z*|Z) that filters out all and only 
the synergistic information. I can prove this using the AVG 
counterexample. Here, I can show that it isn't possible to reduce the 
joint information at all, and yet in the joint information there is nett 
synergy.

– AVG (e.g. Supervisors): X and Y are independent with uniform 
distributions, and the probability that Z is On is the mean of the 
probability that X is On and the probability that Y is On (1 if both are 
On, 0.5 if only one is On, and 0 if neither is On).
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Griffith & Koch (2012) 

Counterexample to GrifKoch12 (cont.)

– AVG (e.g. Supervisors): Incorrectly reports no synergy. But the nett 
synergy is ?? bits.

– Therefore, the measure defined by GrifKoch12 can be an 
underestimate of the amount of synergy, contrary to their assertion. At 
best, they have provided a way to calculate a lower limit to the amount 
of synergy in a relationship.

– GrifKoch12 = possibly filtering synergistic information 
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Harder, Salge & Polani (2013) 

HardSalgPola13 measure of redundancy

– HardSalgPola13 take an interesting pseudo-geometrical approach to 
this problem, although the information geometry plays a quite 
superficial role. They measure pseudo-distances between probability 
distributions using KL divergence, which distinguishes appropriately 
between raising and lowering the probability of each value of Z.
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Harder, Salge & Polani (2013) 

HardSalgPola13 measure of redundancy (cont.)

1. DKL1 = For each value x, they measure the amount of information this 
gives about Z, which is captured by the KL divergence between the 
two distributions Pr(Z) and Pr(Z|x). Roughly, this is how far the x-
distribution is from the original distribution.

2. DKL2 = Then they search for the distribution Pr*(Y) that would have the 
most similar effect on Z, i.e. yield the least KL divergence between the 
distributions Pr(Z|x) and Pr(Z|Pr*(Y)). Roughly, this is how far the 
Pr*(Y)-distribution is from the x-distribution.

3. I(X;Z) in I(Y;Z) = The amount of information from x that can be 
expressed by Y is taken to be the difference between these KL 
divergences. Roughly, subtract one distance from the other to get the 
shared distance from the original distribution.
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Harder, Salge & Polani (2013) 

HardSalgPola13 measure of redundancy (cont.)

Pr(Z|x)

Pr(Z)

Pr(Z|Pr*(Y))

DKL1

DKL2
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Harder, Salge & Polani (2013) 

Counterexample to HardSalgPola13

– It's not clear that this pseudo-geometric calculation will always give us 
the best measure of the common effect of x and Pr*(Y).

– But I'm not going to explore this here, because there are bigger
problems with this proposal:

1. Pr*(Y) is merely a possible distribution, there is no requirement that it 
actually occurs. So, Y need not ever actually have a similar effect to X.

2. There is no discussion of whether x and Pr*(Y) ever occur at the same 
time, and what the resulting distribution is over Z.
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Harder, Salge & Polani (2013) 

Counterexample to HardSalgPola13 (cont.)

– We think redundancy would be where x and Pr*(Y) occur at the same 
time, and have the same common effect (but no more) that either of 
them would provide alone. So, HardSalgPola13 fail to measure what 
they said they wanted to measure. They are measuring something like 
'possible similar information' instead. We can vividly illustrate the 
difference with our GHO example.

– GHO: As for UNQ, except that X has two additional values with zero 
probability that could produce the same effect on Z as the two values 
of Y, and similarly X has two additional values with zero probability that 
could produce the same effect on Z as the two values of Y.
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Harder, Salge & Polani (2013) 

Counterexample to HardSalgPola13 (cont.)

– GHO: Incorrectly reports complete redundancy. These "ghost" values 
entail that X and Y could possibly have the same effects as each other, 
and this has a huge impact on their measure. Yet these "ghost" values 
never actually occur, so they have no impact in calculating the 
individual and joint information. The presence and effects of "ghost" 
values can be altered arbitrarily to affect their measure, without ever 
affecting the individual and joint information. This is implausible. 

– HardSalgPola13 = possible similar information 


